Fabrication of Electrospun Eugenol/Cyclodextrin Inclusion Complex Nanofibrous Webs for Enhanced Antioxidant Property, Water Solubility, and High Temperature Stability.
نویسندگان
چکیده
In this study, inclusion complexes (IC) of three cyclodextrin derivatives (HP-β-CD, HP-γ-CD, and M-β-CD) with eugenol (essential oil compound) were formed in highly concentrated aqueous solutions and then transformed into self-standing functional nanofibrous webs by electrospinning. The improved aqueous solubility of eugenol was confirmed by phase solubility diagrams, in addition, the phase solubility tests also revealed 1:1 molar ratio complexation between host:guest molecules; CD:eugenol. Even though eugenol has a volatile nature, a large amount of eugenol (∼70-95%) was preserved in eugenol/cyclodextrin inclusion complex nanofibrous webs (eugenol/CD/IC-NW). Moreover, enhanced thermal stability of eugenol was recorded for eugenol/CD/IC-NW (up to ∼310 °C) when compared to pure form of eugenol (up to ∼200 °C). The eugenol/CD/IC-NW exhibited fast dissolving behavior in water, contrary to poorly water-soluble eugenol. It was observed that the complexation between M-β-CD and eugenol was the strongest when compared to other two host CD molecules (HP-β-CD and HP-γ-CD) for eugenol/CD/IC-NW samples. The electrospun eugenol/CD/IC-NW samples have shown enhanced antioxidant activity compared to pure form of eugenol. In summary, cyclodextrin inclusion complexes of essential oil compounds, such as eugenol, in the form of self-standing nanofibrous webs may have potentials for food and oral-care applications due to their particularly large surface area along with fast-dissolving character, improved water solubility, high temperature stability, and enhanced antioxidant activity.
منابع مشابه
Thymol/cyclodextrin inclusion complex nanofibrous webs: Enhanced water solubility, high thermal stability and antioxidant property of thymol.
The development of novel nanomaterials that provide an efficient encapsulation and protection for the active food additives is one of the main focuses of current research efforts at food application areas. From this point of view, in this study, nanofibrous webs from inclusion complexes (IC) of modified cyclodextrins (hydroxypropyl-β-cyclodextrin (HPβCD), hydroxypropyl-γ-cyclodextrin (HPγCD) an...
متن کاملPolymer-free electrospun nanofibers from sulfobutyl ether7-beta-cyclodextrin (SBE7-β-CD) inclusion complex with sulfisoxazole: Fast-dissolving and enhanced water-solubility of sulfisoxazole.
In this study, our aim was to develop solid drug-cyclodextrin inclusion complex system having nanofibrous morphology in order to have fast-dissolving property and enhanced water-solubility of poorly water-soluble drug. Here, we prepared a highly concentrated aqueous solution of inclusion complex between sulfisoxazole and sulfobutyl ether7-beta-cyclodextrin (SBE7-β-CD, Captisol®), and then, with...
متن کاملPolymer-free nanofibers from vanillin/cyclodextrin inclusion complexes: high thermal stability, enhanced solubility and antioxidant property.
Vanillin/cyclodextrin inclusion complex nanofibers (vanillin/CD-IC NFs) were successfully obtained from three modified CD types (HPβCD, HPγCD and MβCD) in three different solvent systems (water, DMF and DMAc) via an electrospinning technique without using a carrier polymeric matrix. Vanillin/CD-IC NFs with uniform and bead-free fiber morphology were successfully produced and their free-standing...
متن کاملAntioxidant Vitamin E/Cyclodextrin Inclusion Complex Electrospun Nanofibers: Enhanced Water Solubility, Prolonged Shelf Life, and Photostability of Vitamin E.
Here, we demonstrated the electrospinning of polymer-free nanofibrous webs from inclusion complex (IC) between hydroxypropyl-β-cyclodextrin (HPβCD) and Vitamin E (Vitamin E/HPβCD-IC NF). The inclusion complexation between HPβCD and Vitamin E was prepared by using two different molar ratios (Vitamin E/HPβCD; 1:2 and 1:1), which correspond to theoretical value of ∼13% (w/w) and 26% (w/w) loading ...
متن کاملElectrospun nanofibers from cyclodextrin inclusion complexes with cineole and pcymene: enhanced water solubility and thermal stability
The electrospinning of self-standing nanofibrous webs from inclusion complexes (IC) of cineole and p-cymene with two modified cyclodextrins (HPbCD, HPcCD) was achieved without using carrier polymeric matrix. Although they are highly volatile, certain amount of cineole and p-cymene was protected in cyclodextrin inclusion complexes nanofibers (CD-IC-NF). That is, 68.4%, 78.1%, 54.5% and 44.0% (w/...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of agricultural and food chemistry
دوره 66 2 شماره
صفحات -
تاریخ انتشار 2018